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Hyperspherical harmonics as Sturmian orbitals in momentum space: a
systematic approach to the few-body Coulomb problem

VINCENZO AQUILANTI, SIMONETTA CAVALLI, CECILIA COLETTI,
DANIELA DI DOMENICO and GAIA GROSSI

Dipartimento di Chimica, UniversitaÁ di Perugia, I-06123 Perugia, Italy

To exploit hyperspherical harmonics (including orthogonal transformations)
as basis sets to obtain atomic and molecular orbitals, Fock projection into
momentum space for the hydrogen atom is extended to the mathematical d-
dimensional case, higher than the physical case d ˆ 3. For a system of N particles
interacting through Coulomb forces, this method allows us to work both in a
d ˆ 3…N ¡ 1† dimensional con®guration space (on eigenfunctions expanded on a
Sturmian basis) and in momentum space (using a …d ‡ 1†-dimensional hyper-
spherical harmonics basis set). Numerical examples for three-body problems are
presented. Performances of alternative basis sets corresponding to di� erent
coupling schemes for hyperspherical harmonics have also been explicitly obtained
for bielectronic atoms and H‡

2 (in the latter case, also in the Born±Oppenheimer
approximation extending the multicentre technique of Shibuya and Wulfman).
Among the various generalizations and applications particularly relevant is the
introduction of alternative expansions for multidimensional plane waves, of use
for the generalization of Fourier transforms to many-electron multicentre prob-
lems. The material presented in this paper provides the starting point for numerical
applications, which include various generalizations and hierarchies of approxima-
tion schemes, here brie¯y reviewed.
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1. Introduction
1.1. Motivation

In this paper we deal with atomic and molecular structure as a quantum
mechanical few-body problem: properly normalized hyperspherical harmonics (here
appearing as Fourier transforms of hydrogenic Sturmians [1, 2]) are considered as
expansion basis sets for atomic and molecular orbitals. In the treatment presented a
key role is played by the famous Fock projection for the hydrogen atom in
momentum space, which leads to the connection between hydrogenic orbitals and
hyperspherical harmonics on the four-dimensional sphere S3. Since these harmonics
are a basis set for the irreducible representations of the rotation group in a four-
dimensional space, hydrogenoid orbitals can be looked at as representations of the
four-dimensional hyperspherical symmetry [3].

Harmonic analysis is a basic tool for quantum chemistry and atomic and
molecular physics. It generalizes Fourier expansions and transforms, and its
computational implementation is now being extended beyond the three-dimensional
case [3, 4]. In quantum mechanics, wavefunctions for the angular part of the kinetic
energy operator are spherical harmonics, that is eigensolutions to the Beltrami±
Laplace operator on the ordinary sphere: they add and multiply according to the
rotation group operations, so providing the framework for the quantum theory of
angular momentum (Clebsch±Gordan series, sum rules for 3-j and 6-j coe� -
cients, . . . ). For few-body dynamics, the kinetic energy operators, when conveniently
written in hyperspherical coordinates, can be added so as to give a Beltrami±Laplace
operator on a multidimensional sphere: its eigensolutions are hyperspherical har-
monics, which can be interpreted as wavefunctions of hyperangular momenta, whose
algebra can be developed, within the framework of orthogonal polynomial and
hypergeometric function theory [5].

Hyperspherical coordinates for mapping of potential energy surface are well
established for three-body problems and the use of harmonics as expansion basis sets
as well. Progress for problems involving more particles is recorded in nuclear, atomic
and molecular physics, leading to interesting mathematical and computational
implications: examples are generalizations [6] of 3-j and 6-j coe� cients and their
connections with Hahn’s and Racah’s discrete polynomials. These connections are
particularly illuminating also because they allow handling through algebraic codes.

These techniques involve, for the N-body problem, the introduction of a
hypersphere of dimensionality 3N ¡ 4, and the additional variable, the hyperradius

», is treated on a di� erent footing. This is useful in general and crucial for reactions.
Although we exploit many of the technicalities of the current approach, we work on
a 3N ¡ 3 sphere, that is we map all the coordinates on hyperspheres of unit radius,
but we do this in momentum space and for structural problems.

This paper is intended essentially as a guided tour on setting up a formulation of
the problem of quantum chemistry (atomic and molecular structure) as a perturba-
tion of the hyperspherical symmetry, and thus most parts have the character of a
review. However, we believe that the emphasis on harmonic expansions and the
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extended angular momentum algebra has the ¯avour of novelty, as the consideration
of alternative coordinates and coupling schemes for the three-body problem. For
progress on four bodies, see [7±12].

New results are as follows.

(i) The expression of the secular equations entirely in terms of ingredients of
(extended) angular momentum algebra (see section 3.2). This is shown here
to be feasible also for `radial’ integrals. This allows the understanding of the
structure of the relevant matrices, including their zeroes, sparseness being
crucial in applications.

(ii) The alternative formulations of the three-body Coulomb problem, including
numerical results both for the isoelectronic sequence and for di� erent mass
combinations, particularly H‡

2 [2]. The latter example proves the variational
convergence of the procedure, previously questioned [13].

1.2. Background
In 1935 Fock [14] proved that the wavefunctions of the hydrogen atom jnlmi in

momentum space are, apart from a normalization factor, four-dimensional spherical
harmonics, that is eigenfunctions of the Laplace operator on the three-dimensional
manifold S3 (the surface of the sphere embedded in a four-dimensional Euclidean
space). Thus the principal quantum number n can appropriately be interpreted as a
hyperangular momentum quantum number: the hidden symmetry giving rise to the
accidental degeneracy emerging in the three-dimensional con®guration space treat-
ment is actually a manifestation of a symmetry in four-dimensional space. Such a
symmetry has been analysed and discussed in various papers [15], reviews [16] and
books [17]. The jnlmi basis, which will be referred to as spherical in the following,
corresponds to separation in polar coordinates, and in momentum space to
separation in spherical coordinates on the hypersphere S3 [18]. As an alternative
to the jnlmi basis, it is also interesting to consider in detail the Stark and Zeeman
bases which are particularly useful in problems where a direction in space is
privileged, such as is the case when atoms are in an electric or magnetic ®eld. The
Stark states jn·mi correspond to separation in parabolic coordinates on ordinary
space and in cylindrical coordinates on S3. The Zeeman basis, denoted as jn¶mi, has
been introduced more recently by Labarthe [19] and has found increasing applica-
tions [20]. According to the emerging interpretation of the quantum numbers, the
passage between the alternative sets can be explicitly viewed as a change in coupling
schemes of hyperangular momenta [21].

The generalization of Fock’s projection to higher spaces permits multielectronic
and multicentre orbitals to be built up. Six-dimensional Sturmian functions and their
counterparts in momentum space, seven-dimensional hyperspherical harmonicsÐ
that is bases for the irreducible representations of the rotational group O(7)Ðare
considered as basis sets to expand atomic orbitals for bielectronic systems (helium
and its isoelectronic series). The advantage of employing hyperspherical harmonics
lies in the possibility of introducing alternative parametrizations, labelled by various
quantum numbers, corresponding to di� erent reduction schemes of the rotational
group O(7) into its subgroups. The approach is completely general and formally can
be extended to any N-body Coulomb problem; the matrix elements which have to be
calculated for the secular equation, are expressed by vector coupling and recoupling
coe� cients (harmonic superpositions) of the rotation group O(d), since in the
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expansions d-dimensional hyperspherical harmonics are used. Since these coe� cients
coincide with those of angular momentum algebra conveniently generalized, this
compact formalism is interpretable in terms of couplings and recouplings of
hyperangular momenta. This leads to a classi®cation of hyperspherical bielectronic
orbitals, here given explicitly for zero total angular momentum. The e� ectiveness of
the various parametrizations are illustrated according to the physical interpretation
attached to the meaning of the di� erent quantum numbers.

1.3. Outline
Section 2 accounts for the hyperspherical harmonics of the four-dimensional

rotation group O…4† according to the same spirit of previous investigations [2, 4],
where the possibility has been considered of exploiting di� erent parametrizations of
the Sn hypersphere to build up alternative Sturmian [22] basis sets. Their symmetry
and completeness properties make them in fact adapt to solve quantum mechanical
problems where, although the hyperspherical symmetry of the kinetic energy
operator is broken by the interaction potential, the corresponding perturbation
matrix elements can be worked out explicitly: this is the case of many particles
interacting through Coulomb forces (see section 3). Section 4 includes numerical
tables and appraisals of the convergence for the key example of three Coulomb
particles, in particular for the two electron systems of the He sequence.

Generalizations [22, 23] greatly improving convergence and extension to mol-
ecules within the ®xed-nuclei scheme [2] are under focus. Section 5 provides addi-
tional remarks and concludes the paper by indicating directions of further progress.

2. Hydrogenic orbitals and the symmetry of the hypersphere S 3

In section 2.1 we review the Fock projection onto the surface of a sphere in four-
dimensional hyperspace in order to establish the connections of the momentum
space wavefunctions with hyperspherical harmonics. In particular, the relationships
among coordinate sets which de®ne the spherical, the Stark and the Zeeman basis
sets are considered. The explicit formulae for transformations between these bases
are given in section 2.2.

In some preceding papers [5, 24] we have indicated how to exploit the fact that in
the theory of the O…4† group [17], the 3-sphere admits di� erent systems of hyper-
spherical coordinates to which correspond alternative harmonics. In [3] we have
classi®ed the hyperspherical harmonics of the group O…4†, and shown that there are
15 distinct bases. The relationship between alternative separable solutions of the
Coulomb problem in momentum space is exploited in order to obtain hydrogenic
orbitals that are of interest for Sturmian expansions of use in atomic and molecular
structure calculations and for the description of atoms in ®elds.

2.1. Momentum space: alternative hydrogenic orbitals
That Sturmian eigenfunctions in momentum space in spherical coordinates are,

apart from a weight factor, standard hyperspherical harmonics (see equation (9)),
can be seen following the famous Fock treatment of the hydrogen atom in which the
tridimensional space is projected onto the 3-sphere S3 (the unit radius hypersphere
embedded in a four-dimensional space). The essentials of Fock analysis of relevance
here are brie¯y sketched now.
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The Fock transformation of variables consists in projecting the momentum
vector p with coordinates px; py; pz and modulus p on a tetradimensional hyper-
sphere. This transformation is analogous to the inverse of a stereographic projection:
each point on the 3-sphere with coordinates u1; u2; u3; u4 corresponds to the point
px; py; pz:

u1 ˆ 2p0py

p2
0 ‡ p2

ˆ sin À sin # sin ’

u2 ˆ 2p0px

p2
0 ‡ p2

ˆ sin À sin # cos ’

u3 ˆ 2p0pz

p2
0 ‡ p2

ˆ sin À cos #

u4 ˆ p2
0 ¡ p2

p2
0 ‡ p2

ˆ cos À

…1†

where the momentum p0 ˆ …¡2E†1=2 is directly related to the energy spectrum. Here
u1; u2; u3; u4 de®ne a hypersphere of unit radius

u2
1 ‡ u2

2 ‡ u2
3 ‡ u2

4 ˆ 1 …2†

and the polar angles # and ’ specify the orientation of the vector p in momentum
space:

px ˆ p sin # cos ’

py ˆ p sin # sin ’

pz ˆ p cos #:

…3†

The spherical parametrization (1)Ðgraphically exhibited by the tree method [24]
(see ®gure 1(a))Ðis used to establish the relationship between the volume element dp
in momentum space and the solid angle element d! in the four-dimensional space:

dp ˆ p2
0 ‡ p2

2p0

3

d! …4†

where

dp ˆ p2 dp sin # d# d’ …5†
and

d! ˆ sin2 À sin # dÀ d# d’ …6†

being that (from equation (1)):
dÀ

dp
ˆ 2p0

p2
0 ‡ p2

: …7†

In order to illustrate graphically the geometrical interpretation of Fock’s
transformation we refer to a two-dimensional momentum space (the plane
(p1; p2)). Figure 2 illustrates the inverse stereographic projection p1; p2 of a point
u1; u2; u3 on the surface of a unit radius sphere S2 in the familiar three-dimensional
space.

In the speci®c case of the hydrogen atom the eigenfunctions Ánlm…p† in
momentum space, which can be considered as Fourier transforms of their
con®guration space counterparts:
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Ánlm…p† ˆ …2p†¡3=2

…
exp …¡{r · p†unlm…r† dr …8†

are just hyperspherical harmonics except for a weight function. That is

Ánlm…p† ˆ …¡†n¡1¡jmj…{†l‡m¡jmj 4p
5=2
0

…p2
0 ‡ p2†2

Yn¡1;l;m…À; #; ’†: …9†

The explicit expressions for Ánlm…p† for the hydrogen atom had been obtained for the
®rst time by Podolsky and Pauling [28] analytically. Through the tree method [24]
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Figure 1. Three alternative parametrizations of the unit sphere S3 in the four-dimensional
space R4, corresponding to three di� erent hyperspherical harmonics. The tree graphical
technique [25±27] is employed: it illustrates the relationship between Cartesian coord-
inates ui and angular parametrizations of the hypersphere. A hypersphere of R4

is parametrized either by four Cartesian coordinates or by a hyperradius » and three
hyperangles. There are four `leaves’ corresponding to the Cartesian coordinates, conn-
ected to the branches which join at three nodes representing the angles. The
convention is as follows: the branch converging to the node from the left (right)
represents the cosine (sine) of the hyperangles. Starting from a leaf and going down
to the root of the tree, through the various nodes, we establish a relation between
coordinates and hyperangles. Tree (a) shows Fock projection when the parametr-
ization is according to the coordinate system (1) and the corresponding harmonics is
Yn¡1;l;m…À; #; ’†. Tree (b) is an alternative representation with respect to tree (a);
it corresponds to a parametrization according to the angles in equation (10). The
corresponding harmonic is …¡†n¡1…{†m…n=…2º2††1=2

D
…n¡1†=2

…·‡m†=2;…·¡m†=2…¡© ¡ ’; 2£; ’ ¡ ©†.
We can pass from tree a to b using the suitable Clebsch±Gordan coe� cient (equation

(12)). Tree (c) illustrates the hyperspherical parametrization that leads to the
hyperspherical harmonics Yn¡1;¶;m…Á; ²; ’†. They are related to the harmonics of tree
(a) through the Z coe� cient de®ned in equation (13). The connection between (b)
and (c) requires a Clebsch±Gordan coe� cient and a phase change connected to ¬ (see
equation (14)). From a Lie group theoretical viewpoint, trees …a† and …c† correspond
to O…4† ¼ O…3† ¼ O…2†, which is the chain of reduction of the four-dimensional
rotation groups O…3† and O…2†, respectively. Tree …b† corresponds to
O…4† ¼ O…2† O…2†.
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®gure 1(a) shows that the part in m and l represents the spherical harmonic and the
part in l and n a Gegenbauer polynomial. According to this point of view the
quantum number n plays the role of a hyperangular momentum quantum number,
labelling a harmonic on S3.

The connections between alternative systems of hyperspherical coordinates are
visualized by the tree method [24] in ®gure 1; from a group theoretical viewpoint, the
alternative coupling schemes are seen to correspond to the subgroup reduction
chains O…4† ¼ O…3† ¼ O…2† (®gures 1(a) and (c)) and O…4† ¼ O…2† O…2† (®gure
1(b)). The ®gure also illustrates how alternative quantum numbers for the basis sets
arise as labels for harmonics for the subgroups of the reduction chain.

Figure 1 also helps in writing down the four-dimensional sphere parametrizations
corresponding to the alternative representations for Fock projection.

The set of angles in ®gure 1(b) parametrizing the 3-sphere de®nes a point on the
three-dimensional sphere [17] as follows:

u1 ˆ sin £ sin ’

u2 ˆ sin £ cos ’

u3 ˆ cos £ sin ©

u4 ˆ cos £ cos ©

…10†
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Figure 2. The stereographic projection establishes a relationship between points on a sphere
Sn and a Euclidean space Rn. The case n ˆ 3 is the one used by Fock for the
hydrogen atom (see section 2). The simpler case n ˆ 2 is shown here for illustration:
stereographic projection of a point p in a plane with coordinates p1 ˆ p sin ’ and
p2 ˆ p cos ’ onto the surface of a unit sphere with coordinates u1 ˆ sin # sin ’;
u2 ˆ sin # cos’; u3 ˆ cos#, where cos# ˆ …p2

0 ¡ p2†=…p2
0 ‡ p2†. The shaded zone

represents the projection of the points of the plane onto the part of the spherical
bowl comprised between the equator and the axes u1 and u2. The points ful®lling the
condition p ˆ p0 are projected onto the equator.
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where £; ’; © are the cylindrical angles describing the coordinates on a tetradimen-
sional space (see also [17]; a similar system of angles is used by Kalnins et al. [15] who
give a general treatment of the properties of the group O…4†).

Through the set of angles in ®gure 1(c), a point in the four-dimensional
momentum space is de®ned in the following way:

u1 ˆ cos Á cos ² sin ’

u2 ˆ cos Á cos ² cos ’

u3 ˆ sin Á

u4 ˆ cos Á sin ²

…11†

where Á and ² are the hyperangles that de®ne the Zeeman basis.

2.2. The connection between alternative basis sets
In the following, we pay special attention to the connections among the spherical,

Stark and Zeeman basis. Since in momentum space the orbitals are simply related to
hyperspherical harmonics, these connections, strictly linked to alternative para-
metrizations of the 3-sphere illustrated in the previous section, are given by
orthogonal matrix elements similar (when not identical) to the elements of angular
momentum algebra.

Let us now consider the overlap between the spherical and the Stark basis. For
the latter, the momentum space eigenfunctions, which in con®guration space
correspond to variable separation in parabolic coordinates, are similarly related to
alternative hyperspherical harmonics [2]. The connecting coe� cient between sphe-
rical and Stark basis is formally identical to a usual vector coupling coe� cient (from
now on n is omitted from the notation):

hlmj·mi ˆ …¡†…n¡1‡m¡·†=2 n ¡ 1 ‡ m

2
; ¡ ·

2
;
n ¡ 1 ¡ m

2
;
·

2
l0 …12†

for any allowed n, n l ‡ 1 and n jmj ‡ j·j ‡ 1. This transformation was given for
the ®rst time in con®guration space by Park [29], who did not specify the explicit
form of the eigenfunctions and so did not de®ne the phase convention. Progress was
made by Hughes [30] and by Tarter [31] (who calculated the matrix elements by
direct integration) and the correct phase is given by Engle®eld [17]. Note that for the
basis set j·mi, unlike jlmi, the operation of parity is not conserved, however, it is
possible to build a parity conserving Stark basis set by appropriately combining the
basis functions j·mi. Progress in this sense is described in [32].

The Clebsch±Gordan coe� cient in equation (12), having at least one zero
element, suggests that · can be interpreted as a helicity quantum number. Physically
this means that the chosen axis is the one corresponding to a zero component of the
orbital angular momentum vector l and therefore lies in the plane of the orbit, like
the Runge±Lenz vector [15, 17]; an operation of this kind ®nds its analogues in
several contexts: we mention the space-®xed to body-®xed transformation in mol-
ecular collisions [33], the Hund’s cases (e) ! (c) transformation in molecular
spectroscopy and atomic scattering [34, 35] and the passage between symmetric
and asymmetric coordinates in the hyperspherical treatment of the three-body
problem [36, 37].

The coe� cient connecting the polar and Zeeman basis [3] was called Z:
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hlmj¶mi ˆ …¡†l‡¶Znm
l¶ : …13†

The overlap between spherical and Zeeman states, was originally derived as a sum of
the product of two vector coupling coe� cients [19] (see ®gure 1):

Zn;m
l;¶ ˆ

X

·

…¡†¬ n ¡ 1 ‡ m

2
; ¡ ·

2
;
n ¡ 1 ¡ m

2
;
·

2
l; 0

n ¡ 1 ‡ m

2
; ¡ ·

2
;
n ¡ 1 ¡ m

2
;
·

2
¶; 0 …14†

where ¬ ˆ …n ¡ 1 ¡ m ¡ ·†=2 ‡ l ‡ ¶ is an integer. It is worth noticing that the Zn;m
l;¶

coe� cient is strictly related to O…4†-representation function. The phase …¡†¡·=2 is
equivalent to a rotation of the coordinate system through an angle º=2 in the four-
dimensional space. If this phase were omitted, the sum would be ¯l¶ [38].

By direct integration or by specializing overlap coe� cients between alternative
harmonics [38] we are able to write it directly as a single sum of the Racah type. This
sum [39] is a hypergeometric function 4F3 of unit argument:

Zn;m
l;¶ ˆ

���������������������������
…l ‡ 1

2
†…¶ ‡ 1

2
†

q
C…l† C…¶†‰ Š1=2

¡
n ¡ m ¡ q…l† ¡ q…¶†

2

¡…m ‡ 1†¡
m ‡ n ‡ 1 ‡ q…l† ‡ q…¶†

2

4F3

m ¡ l ‡ q…l†
2

;
m ‡ l ‡ q…l† ‡ 1

2
;

m ¡ ¶ ‡ q…¶†
2

;
m ‡ ¶ ‡ 1 ‡ q…¶†

2

m ‡ 1;
m ¡ n ‡ 1 ‡ q…l† ‡ q…¶†

2
;

m ‡ n ‡ 1 ‡ q…l† ‡ q…¶†
2

; 1

0

BB@

1

CCA

…15†
where

C…k† ˆ

n ‡ k ¡ 1

2
‡ p…k† !

k ‡ m

2
¡ q…k† !

k ¡ m

2
¡ q…k† !¡

n ¡ k

2
‡ p…k†

¡
n ‡ k ‡ 2

2
‡ p…k† ¡

m ‡ k ‡ 1

2
‡ q…k†

¡
k ¡ m ‡ 1

2
‡ q…k† n ¡ k ¡ 1

2
¡ p…k† !

and

p…k† ˆ ¡
1 ‡ …¡1†k¡n

4
; q…k† ˆ

…¡1†k¡m ¡ 1

4

(see [3] for the explicit expression and table 1 for numerical values).
The sum in (15) can also be connected with Racah polynomials [38], although it

cannot be reduced to the ordinary Racah or 6-j coe� cient which performs angular
momentum recoupling. Indeed, like a Racah recoupling coe� cient Zn;m

l;¶ enjoys
orthonormal properties with respect to summation on two angular momentum
quantum numbers (l and ¶), but contains the projection quantum number m. We
found that the Z coe� cient can be compactly written as a generalized 6-j symbol [3,
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40] (care is needed when the standard 6-j symbols symmetries are considered, see
[41]):

Zn;m
l;¶ ˆ …¡†…l‡¶†=2‡1‡p…l†‡p…¶†

���������������������������
…l ‡ 1

2
†…¶ ‡ 1

2
†

q p…¶† ¡ 1

4

n ¡ 1

2

¶

2
¡ 1

4

p…l† ¡ 1

4

m ¡ 1

2

l

2
¡ 1

4

8
><

>:

9
>=

>;
: …16†

Note that Zn;m
l;¶ is zero when n ‡ l ‡ ¶ ‡ m is even and shows the symmetries

Zn;m
l;¶ ˆ Zn;¡m

l;¶ and Zn;m
l;¶ ˆ Zn;m

¶;l . Moreover it enjoys most properties of ordinary 6-j
symbols, such as several recurrence relationships [42], including a three-term one
which allows accurate and e� cient calculations [43±45] even for large values of the
arguments.

3. Atomic and molecular structure and the breaking of hyperspherical symmetry
The generalization of Fock’s treatment to spaces of higher mathematical

dimensions than the physical one [4] allows us to study atomic and molecular
structure from the point of view of the broken symmetry of hyperspheres. As a
matter of fact the quantum mechanics of atoms and molecules can be discussed in
terms of the breaking of the hyperspherical symmetry of a d-dimensional hydro-
genoid atomÐd ˆ 3…N ¡ 1† for N body Coulomb problemsÐdue to the intro-
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Table 1. Non-zero Z
n;m
l;¶ matrix elements up to n ˆ 4.

nl¶m Z
n;m
l;¶ nl¶m Z

n;m
l;¶

1000 1 4111 1
5

2100 1 4210
2���
5

p

211 ¡ 1 ¡1 422 ¡ 1 ¡1

2111 1 4221 1

3000 1
3 4300

2���
5

p

3110 1 431 ¡ 1 ¡
2

���
6

p

5

3200
2

���
2

p

3
4311

2
���
6

p

5

321 ¡ 1 ¡1 432 ¡ 2 1

3211 1 4320 ¡ 1���
5

p

322 ¡ 2 1 4322 1

322 ¡ 1 ¡1 433 ¡ 3 ¡1

3220 ¡1
3 433 ¡ 1 1

5

3222 1 4331 ¡1
5

4100
1���
5

p 4333 1

411 ¡ 1 ¡1
5
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duction of further charged particles (electrons and/or nuclei). Thus in con®guration
space, Sturmian basis functions [4] (multidimensional hydrogenic orbitals of ®xed
energy, see the following) can be used as expansion bases sets to build up atomic and
molecular orbitals. Since the counterparts of d-dimensional Sturmian functions in
momentum space are …d ‡ 1†-dimensional hyperspherical harmonics, the possibility
of exploiting di� erent parametrizations of the …d ‡ 1†-dimensional sphere can be
considered. Additionally, one can choose among alternative hyperspherical har-
monics pertaining to di� erent subgroup chain reductions of the original …d ‡ 1†-
dimensional rotation group and thus possessing di� erent symmetry properties. The
corresponding superposition coe� cients can be written in terms of vector coupling
or recoupling coe� cients (and their extensions to include as arguments multiples of
1/4) and, due to the duality between con®guration and momentum space, can also be
used to connect alternative Sturmian bases in con®guration space.

The method which we will discuss, from a formal viewpoint, is general and thus
can be applied to any N-body Coulomb problem. In this section we analyse the
three-body Coulomb problem, exploiting considerations on the symmetry of the
seven-dimensional rotational group and involving a mapping on the S6 hypersphere.
The matrix elements which have to be calculated to set up the secular equation can
be very compactly formulated. All integrals can be written in closed form as matrix
elements corresponding to coupling, recoupling or transformation coe� cients of
hyperangular momenta algebra.

The results that we have obtained represent an exploration about the power of
this formulation, with particular reference to convergence of alternative sets. This
point of view is crucial to work out approximation and truncation techniques for the
basis sets and to make this formulation not only formally complete, but also
computationally e� cient.

3.1. Hyperspherical coordinate representation
In the hyperspherical approach to the N-body problem (see [46] for an

elementary account), the ®rst step consists of separating the centre mass motion
and then, after mass scaling the coordinates, one is led to the study of a single
particleÐwith reduced mass · ˆ …

Q
mi=

P
mi†1=…N¡1†Ðin a d-dimensional space. In

this space the position of the particle is de®ned by a vector r whose length is the
hyperradius r

r2 ˆ
Xd

iˆ1

x2
i …17†

where xi are mass weighted Cartesian coordinates. The orientation of the vector r is
speci®ed by d ¡ 1 hyperangles, collectively denoted by !, which span the surface of
the hypersphere. The hyperangles ! can be chosen in a number of ways: any
alternative angular parametrization, corresponding to alternative reduction schemes
of the rotation group O…d† into its subgroups, carries quantum numbers which
appear as labels for the harmonics and are conveniently interpreted as eigenvalues of
hyperangular momenta or their `projections’. In the following it will be shown how
the choice of the most suitable parametrization for the problem to be solved is
crucial in this treatment.

The SchroÈ dinger equation for a system of N particles interacting through
Coulomb forces then can be written in the form (atomic units will be implied
throughout):
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¡ 1

2

1

rd¡1

@

@r
rd¡1 @

@r
¡ ¤2

r2
‡ V ¡ E

µ ¶
ª…r† ˆ 0: …18†

¤2 is the generalized angular momentum operator, whose eigenfunctions are
hyperspherical harmonics, obeying the following relationship:

¤2Y¶¼…!† ˆ ¡¶…¶ ‡ d ¡ 2†Y¶¼…!† …19†

where ¶ is the grand orbital angular momentum quantum number and ¼ collectively
represents the set of d ¡ 2 projections of ¶ (i.e. the quantum numbers ¼ are
eigenvalues of the rotation operators of the subgroups related to the chosen chain
reduction).

The Coulomb potential in hyperspherical coordinates takes the simple factorized
form [47, 48]:

V ˆ ¡ «…!†
r

…20†

where «…!† plays the role of an anisotropic charge. Owing to this term equation (18)
is not separable: if «…!† were a constant equation (18) would coincide with the
SchroÈ dinger equation of the multidimensional hydrogen atom, whose solutions can
be obtained exactly [4] as d-dimensional Sturmian basis functions. (Features and
properties of this orthonormal set can be found, for example, in [49, 50].) Therefore,
in con®guration space the many-body Coulomb problem is isomorphic to that of a
multidimensional hydrogen atom with an anisotropic charge. For this reason we feel
encouraged to use d-dimensional Sturmian basis sets to expand multielectronic
orbitals ª…r†.

Furthermore, an attractive feature of the Sturmian basisÐbesides properties
such as orthonormality , completeness, discretization of the continuumÐis its direct
relationship with the hyperspherical harmonics. This connection is revealed by the
generalization of the Fock stereographic projection (section 2) to multidimensional
space [4]: the d-dimensional momentum space, related by Fourier transform to the d-
dimensional con®guration space, is mapped onto a …d ‡ 1†-sphere of unit radius
Sd‡1, so that the integral SchroÈ dinger equation for the hydrogen atom in momentum
space becomes a Helmholtz type di� erential equation whose solutions, apart from
a constant weight function, are …d ‡ 1†-dimensional hyperspherical harmonics,
that is eigenfunctions of a multidimensional Laplace operator. The possibility of
choosing among alternative hyperspherical harmonics, as already remarked, corre-
sponds, in con®guration space, to the possibility of dealing with di� erent Sturmian
basis sets (arising from the separation of the hydrogen atom SchroÈ dinger equation in
di� erent sets of coordinates [4], see [2] for the physical case), which are connected by
the superposition matrix elements identical to those involved by the hyperspherical
harmonics. These matrix elements can be written and explicitly calculated as
(generalized) vector coupling or recoupling coe� cients, that is as elements of an
angular momentum algebra that admits an extended set of quantum numbers.

3.2. Sturmian basis sets as multielectronic atomic orbitals
In con®guration space the solution of equation (18) is expanded into a series of

generalized d-dimensional Sturmian functions [4]:

ª…r† ˆ
X

n¶¼

cn¶¼un¶¼…r† …21†
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where un¶¼…r† can be expressed as the product between a radial and an angular part

un¶¼…r† ˆ un¶…r†Y¶¼…!d¡1†: …22†

Y¶¼…!d¡1† is a hyperspherical harmonic (see equation (19)) on the d-dimensional
sphere and the radial function is

un¶…r† ˆ …2p0†d=2 ‰…n ¡ ¶ ¡ 1†!Š1=2

‰…2n ‡ d ¡ 3†…n ‡ ¶ ‡ d ¡ 3†!3Š1=2
…2p0r†¶

exp …¡p0r†L2¶‡d¡2
n¡¶¡1 …2p0r† …23†

where L2¶‡d¡2
n¡¶¡1 …2p0r† is a Laguerre polynomial (see appendix of [2] for di� erent

notations used in the literature) and p2
0 ˆ ¡2E. The Coulomb Sturmian basis set

is thus seen to be composed of exactly the same type of functions known as
hydrogenic orbitals, for which the solution of the SchroÈ dinger equation gives
p0 ˆ 2Z=…2n ‡ d ¡ 3† (where Z is the nuclear charge). The latter set, however, is
not complete unless one also includes the continuum states, which are very di� cult
to handle. Using the Sturmian sets as expansion bases leads to secular equations
where no restriction is assumed between n and p0 and when p0 is obtained by
diagonalization, energy is recovered as p2

0 ˆ ¡2E. Therefore, this approach is in the
spirit of the very early work by Hylleraas and Slater, providing an automatic
optimization of the `exponent’ of the radial orbitals [51].

The functions un¶¼…r† satisfy the following orthogonality relationship:
…

un 0¶ 0¼ 0 …r†
1

r
un¶¼…r† dr ˆ 2p0

2n ‡ d ¡ 3
¯nn 0 ¯¶¶ 0 ¯¼¼ 0 : …24†

When the solution of the SchroÈ dinger equation for an atom or molecule is expressed
as a linear combination of generalized Sturmian functions, the secular equation takes
an extremely simple form, as illustrated in [1]. By substituting equation (21) into
SchroÈ dinger equation (18) and considering that when using Sturmian functions one
has [1]:

1

rd¡1

@

@r
rd¡1 @

@r
¡ ¤2

r2
un¶¼…r† ˆ ¡ p0…2n ‡ d ¡ 3†

r
‡ p2

0

µ ¶
un¶¼…r†; …25†

we obtain

X

n;¶;¼

2«…!† ¡ p0…2n ‡ d ¡ 3†
r

‡ p2
0 ‡ 2E

µ ¶
cn¶¼un¶¼…r† ˆ 0: …26†

If we now multiply on the left by un 0¶ 0¼ 0 …r† and integrate on the whole space we get

X

n;¶;¼

…
un 0¶ 0¼ 0 …r†

2«…!† ¡ p0…2n ‡ d ¡ 3†
r

un¶¼…r† dr

µ ¶
cn¶¼ ˆ 0 …27†

and using the orthonormality condition for the d-dimensional Sturmian (24)
…

Y¶ 0¼ 0 …!†Y¶¼…!† d!

…
un 0¶ 0…2p0r† 1

r
un¶…2p0r† d…2p0r† ˆ 2p0

2n ‡ d ¡ 3
¯nn 0 ¯¶¶ 0¯¼¼ 0 …28†

one obtains the algebraic system
X

n;¶;¼

p0Ann 0¶¶ 0¼¼ 0 ¡ p2
0¯nn 0 ¯¶¶ 0 ¯¼¼ 0

¡
cn¶¼ ˆ 0 …29†
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where
Ann 0¶¶ 0¼¼ 0 ˆ Rnn 0¶¶ 0«¶¶ 0¼¼ 0 : …30†

Neglecting the uninteresting case p0 ˆ 0 one can rewrite equation (29) as a secular
equation

A ¡ p0I‰ Šc ˆ 0 …31†

where I is the unit matrix. (The momentum space perspective will be shown to
indicate that the factorization (30) of A into a radial and angular contribution can
pro®tably be avoided. This can be crucial when ¶ is suspected not to be a `good’
quantum number.)

Previous derivations [1] (for three-body problem see [13]) can be consulted for
details. Note, however, that the con®guration space perspective provides no link
between n and ¶: here, ¶ µ n ¡ 1. The solution of the secular problem provides the
coe� cients cn¶¼ as eigenvectors for the expansion of multielectronic orbitals and the
eigenvalues p0. In this case the eigenvalues of the secular equation (29) do not give
directly the binding energy of the system in various states, but the latter can be
obtained from the equation p2

0 ˆ ¡2E. The basic ingredients to solve equation (29)
are the integral over the ! angular variables

«¶¶ 0¼¼ 0 ˆ
…

Y¶ 0¼ 0…!†«…!†Y¶¼…!† d! …32†

and the radial integral [36]

Rnn 0¶¶ 0 ˆ 2

������������������������������������������������������������������������������������������������������������������������������
…n 0 ¡ ¶ 0 ¡ 1†!…n ¡ ¶ ¡ 1†!

…2n ‡ d ¡ 3†…2n 0 ‡ d ¡ 3†‰…n 0 ‡ ¶ 0 ‡ d ¡ 3†!…n ‡ ¶ ‡ d ¡ 3†!Š3

s

…
exp …2p0r†…2p0r†¶‡¶ 0‡d¡2L2¶ 0‡d¡2

n 0¡¶ 0¡1 …2p0r†L2¶‡d¡2
n¡¶¡1 …2p0r† d…2p0r†: …33†

The result of the integration (32) will obviously depend on the selected
parametrization for the angular variables and on the particular Coulomb system
under analysis. As will be shown in the following, it can be expressed in terms of
vector coupling and recoupling coe� cients of (hyper)angular momenta. This result
can be easily predicted since equation (32) is an integral on hyperspherical har-
monics.

From the con®guration space perspective the fact that also the explicit expression
of the radial integral Rnn 0¶¶ 0 depends only on the number of particles (i.e. on the
dimension of con®guration space) and not on the nature of the particles and that it
can be written as a linear combination of vector coupling coe� cients (as will be
shown in the next section) might be surprising. However, this apparently unexpected
result is explained by the underlying duality between multidimensional Coulomb
Sturmians in con®guration space and hyperspherical harmonics in momentum space:
the analogue of integral (33) in reciprocal space would be an integral between
hyperspherical harmonics. Thus the momentum space perspective allows the close
relationship between the angular integral «¶¶ 0¼¼ 0 and Rnn 0¶¶ 0 to be realized and the
quantum number n emerges as a label of hyperspherical harmonics.

3.3. The three-body problem
We now turn to the application of the hyperspherical method to the problem of

three particles interacting through Coulomb forces. Our main focus is on bielectronic
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systems (helium and its isoelectronic series) where two of the particles are identical,
while the mass of the other one is much heavier. However, this approach is
completely general and can be immediately extended to whatsoever mass ratios. In
section 4.1 a comparison is reported between numerical results for the bielectronic
series and systems with di� erent mass ratios: H‡

2 beyond a ®xed nuclei scheme and
e¡e‡e¡. In hyperspherical coordinates, the SchroÈ dinger equation for the three-body
problem can be written according to equation (18):

¡ 1

2

1

r5

@

@r
r5 @

@r
¡ ¤2

r2
‡ V ¡ E

µ ¶
ª…r† ˆ 0: …34†

This equation di� ers in the various systems only for the potential expression V . If
r12; r13 and r23 are the distances between the particles, the Coulomb potential can be
written as

V ˆ z1z2

r12

‡ z1z3

r13

‡ z2z3

r23

…35†

where z1; z2 and z3 are their charges. In the hyperspherical parametrizations, three
mass factors c1; c2 and c3 [13, 52] appear (see (45) and (53) below):

c1 ˆ
���
2

p
b sin ¯1; c2 ˆ

���
2

p
b sin ¯2; c3 ˆ

���
2

p
=b …36†

with

b2 ˆ
m1 ‡ m2

m1m2

�����������������������������
m1m2m3

m1 ‡ m2 ‡ m3

r
:

The phase angles ¯i are related to the particle masses by

tan ¯1 ˆ 1

b2

m1 ‡ m2

m1

tan ¯2 ˆ ¡ 1

b2

m1 ‡ m2

m2
:

…37†

For systems with two identical particles we have c1 ˆ c2 ² c and ¯1 ˆ º ¡ ¯2 ² ¯.
The corresponding values of these parameters for some systems are listed in table 2
[13].

The value of parameters c, c3 and ¯ for the helium isoelectronic series remains
substantially the same, as the nucleus for these systems can be considered in®nitely
heavier than the electrons, in particular as the atomic number increases (even if in
our method this approximation is not required). Thus the Coulomb potential given
by equation (35) for each term of the series di� ers only for the charge z3.

Appropriately to a six-dimensional con®guration space, six-dimensional
Sturmian functions will have to be used, whose radial part un¶…2p0r† is

un¶…2p0r† ˆ
…2p0†6…n ¡ ¶ ¡ 1†!

…2n ‡ 3†‰…n ‡ ¶ ‡ 3†!Š3

" #1=2

e¡p0r…2p0r†¶L2¶‡4
n¡¶¡1…2p0r† …38†

obtained by equation (23) setting d ˆ 6.
The explicit expression of radial integrals can now be worked out with the help of

the equation on page 785 of [53] to give
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Rnn 0¶¶ 0 ˆ 2…¡†n¡¶¡2‡n 0¡¶ 0 …n 0 ¡ ¶ 0 ¡ 1†!…n ¡ ¶ ¡ 1†!
…2n 0 ‡ 3†…2n ‡ 3†…n 0 ‡ ¶ 0 ‡ 3†!…n ‡ ¶ ‡ 3†!

µ ¶1=2

X

k

¡…¶ ¡ ¶ 0 ‡ 1†¡…¶ 0 ¡ ¶ ‡ 1†¡…¶ ‡ ¶ 0 ‡ k ‡ 5†
k!…n ¡ ¶ ¡ k†!…n 0 ¡ ¶ 0 ¡ k†!¡…k ¡ n ‡ ¶ 0 ‡ 1†¡…k ¡ n 0 ‡ ¶ ‡ 1† …39†

where the running index k can take all the integer values larger than the largest
between …n ¡ ¶ 0 ¡ 1† and …n 0 ¡ ¶ ¡ 1† and smaller than the smallest between n ¡ ¶
and n 0 ¡ ¶ 0; in the other cases the integral vanishes. Note that equation (39) has to
be compared with the radial integral of [13] (the n there corresponds to our
n ¡ ¶ ¡ 1), however the phase and the factor ‰…n 0 ¡ ¶ 0 ¡ 1†…n ¡ ¶ ¡ 1†Š1=2 are
missing.

As we anticipated in the previous section Rnn 0¶¶ 0 can also be expressed as a linear
combination of vector coupling coe� cients [39]:

Rnn 0¶¶ 0 ˆ 1

…n 0 ‡ ¶ ‡ 4†1=2
‰…n ‡ ¶ ‡ 4†1=2F ‡ …n ¡ ¶ ¡ 1†1=2BŠ …40†

with

F ˆ
2¶ 0 ‡ 3

2
;
n 0 ¡ ¶ ¡ 2

2
;
2¶ ‡ 5

2
;
2n ¡ n 0 ¡ ¶ ¡ 2

2

n 0 ‡ ¶ ‡ 3

2
;
2n ¡ n 0 ‡ ¶ ‡ 3

2

B ˆ
2¶ 0 ‡ 3

2
;
n 0 ¡ ¶ ¡ 2

2
;
2¶ ‡ 5

2
;
2n ¡ n 0 ¡ ¶

2

n 0 ‡ ¶ ‡ 3

2
;
2n ¡ n 0 ‡ ¶ ‡ 5

2

where F and B are Clebsch±Gordan coe� cients, so Rnn 0¶¶ 0 for a three-body
Coulomb problem depends on the involved quantum numbers only and not on
the nature of the system just like the angular integral. If we look at the problem from
the momentum space point of view (see also ®gure 3(a)) the whole matrix Ann 0¶¶ 0¼¼ 0

can be in fact obtained from the integration over angular variables only, para-
metrizing the S6 hypersphere embedded in a seven-dimensional Euclidean space.
Thus the quantum numbers n and ¶ label the eigenvalues of the rotation operators of
the seven-dimensional hypersphere S6 and of a six-dimensional subspace respect-
ively. Under this perspective the possibility of exploiting di� erent parametrizations
of S6 whose symmetry properties are closer to those of the system represents an
extremely attractive feature. This is important for example to eliminate the quantum
number ¶ which, as will be shown in the following, is often a not too `good’ quantum
number for many systems under investigation. Note that this possibility emerges
only when considering the seven-dimensional hypersphere, that is in a momentum
space perspective.
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Table 2. Values of parameters used in equation (36).

c c3 ¯

H¡; He; Li‡; . . . ; O6‡ ���
2

p
1

p
4

H‡
2

���
2

p
42.85 0.016498

e¡e‡e¡ 1 1
p
6
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Rnn 0¶¶ 0 vanishes for particular values of the quantum numbers n; n 0; ¶; ¶ 0 [1]. This
is the case for ¶ ˆ ¶ 0 when n 6ˆ n 0, for ¶ > ¶ 0 when n µ n 0 and, since the matrix R is
symmetric, for ¶ < ¶ 0 when n 0 µ n. When the element Rnn 0¶¶ 0 vanishes the
corresponding matrix element Ann 0¶¶ 0¼¼ 0 becomes zero, and the matrix to be
diagonalized takes the structure of ®gure 4, with blank spaces representing zero
elements. Angular parametrizations appropriate to describe states of de®nite total
angular momentum will be discussed in the following sections.

3.4. Asymmetric hyperangular parametrization
Let us now turn to the question of the evaluation of matrix elements «¶¶ 0¼¼ 0 . Our

analysis starts from the following six-dimensional hyperspherical harmonics:

Y¶;l1 ;l2 ;m1 ;m2
…À; ³1; ³2; ¿1; ¿2†

ˆ N¶;l1 ;l2 sinl1 À cosl2 ÀPl2‡1=2;l1‡1=2
…¶¡l1¡l2†=2

…cos 2À†Yl1 ;m1
…³1; ¿1†Yl2 ;m2

…³2; ¿2† …41†

where Yl1;m1
…³1; ¿1† and Yl2;m2

…³2; ¿2† are spherical harmonics, P
l2‡1=2;l1‡1=2

…¶¡l1¡l2†=2
…cos 2À† is

a Jacobi polynomial and N¶;l1 ;l2 is a normalization factor:
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Figure 3. Hyperspherical harmonics for the three-body Coulomb problem in d ˆ 7
momentum space by the tree graphical technique. Tree …a† represents a
parametrization of the S6 sphere, corresponding in terms of group theory to the
following subgroup reduction chain: O…7† ¼ O…6† ¼ O…3† O…3†. Tree …b†, obtained
from tree …a† by timber vector coupling, involves a O…7† ¼ O…4† O…3† subgroup
chain, where O…4† is the parametrization in asymmetric coordinates for the physical
hydrogen atom. The simpli®cation of the symmetric harmonic (a) (see equation (46))
leads to a reduction of the dimensionality of the problem (tree …c†) and to the
appearance of the O…7† ¼ O…4† O…3† subgroup reduction chain. By application of
the timber coe� cient (57) tree (c) leads to tree (d).D
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N¶;l1 ;l2 ˆ …2¶ ‡ 4† …¶ ¡ l1 ¡ l2†=2‰ Š!
¡ …¶ ‡ l1 ¡ l2 ‡ 3†=2‰ Š

¡ …¶ ‡ l1 ‡ l2 ‡ 4†=2‰ Š
¡ …¶ ‡ l2 ¡ l1 ‡ 3†=2†‰ Š

» ¼1=2

: …42†

This choice is motivated by the physical meaning of the quantum numbers
labelling the harmonic (for H‡

2 l1 represents the rotational angular momentum, l2 the
orbital angular momentum of the electron), m 0 and m 00 are their projections onto the
quantization axis and ¶ is the grand orbital momentum quantum number.

In order to obtain basis functions which are eigenfunctions of the total angular
momentum J and of its projection MJ the harmonics in (41) have to be appropriately
combined:

Y J ;MJ

¶l1l2
ˆ N¶;l1 ;l2 sinl1 À cosl2 ÀPl2‡1=2;l1‡1=2

…¶¡l1¡l2†=2
…cos 2À†

X

m1m2

hl1; m1; l2; m2jJ ; MJiYl1;m1
…³1; ¿1†Yl2;m2

…³2; ¿2† …43†

where hl1; m1; l2; m2jJ ; MJi is a vector coupling coe� cient.
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Figure 4. Structure of the matrix Ann 0¶¶ 0 ¼¼ 0 (equation (11)): non-zero elements are indicated
with crosses. When the radial integral Inn 0¶¶ 0 is zero, the corresponding matrix
element vanishes. The ®gure refers to the 120 120 matrix obtained by truncation on
the quantum number n to n ˆ 15 in the expansion of equation (21).
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Our next step will be the determination of «…!† according to this parametriza-
tion. The anisotropic charge contains all the information about the Coulomb
interaction, depending on the mass, on the charge and on the distances of three
particles, which can be de®ned as follows [52]:

r13 ˆ r

b

�����������������������
1

2

µ
1 ‡ m3

m

¶s

…1 ‡ cos 2¯ cos 2À ¡ sin 2¯ sin 2À cos ³†1=2

r23 ˆ r

b

�����������������������
1

2

µ
1 ‡ m3

m

¶s

…1 ‡ cos 2¯ cos 2À ‡ sin 2¯ sin 2À cos ³†1=2

r12 ˆ br���
2

p …1 ‡ cos 2À†1=2

…44†

where cos ³ ˆ cos ³1 cos ³2 ¡ sin ³1 sin ³2 cos …¿1 ¡ ¿2†.
The anisotropic charge «…!†, which depends only on the internal angles À and ³,

then becomes

«…À; ³† ˆ z1z3c

…1 ‡ cos 2¯ cos 2À ¡ sin 2¯ sin 2À cos ³†1=2

‡ z2z3c

…1 ‡ cos 2¯ cos 2À ‡ sin 2¯ sin 2À cos ³†1=2
‡ z1z2c3

…1 ‡ cos 2À†1=2
: …45†

In the following we will turn our attention to states of zero angular momentum, that
is to S states for the helium and other bielectronic systems.

In this case, the dimensionality of the problem can be simpli®ed [24]; the six-
dimensional harmonics of equation (43), as illustrated in ®gure 3(c) can be reduced
to a four-dimensional harmonics Y¶=2; l; 0…2À; ³; 0†:

Y¶=2;l;0…2À; ³; 0† ˆ A¶=2;l sinl 2ÀCl‡1
¶=2¡l…cos 2À†Yl;0…³; 0† …46†

where Cl‡1
¶=2¡l

…cos 2À† is a Gegenbauer polynomial, Yl;0…³; 0† a spherical harmonic
and A¶=2;l the normalization factor:

A¶=2;l ˆ ¡…¶ ‡ l ‡ 3†

2l‡1¡
¶

2
‡ 3

…¶ ‡ 2† ¶

2
¡ l !

¡
¶

2
‡ l ‡ 2

2

664

3

775: …47†

Note that the quantum number ¶=2 has to be an integer, thus ¶ is even and
0 µ l µ ¶=2, furthermore only even values of l are allowed [54].

Equation (32) can now be written as

«¶¶ 0 ll 0 ˆ
…

Y¶=2;l;0…2À; ³; 0†«…À; ³†Y¶ 0=2;l 0 ;0…2À; ³; 0† d cos 2À d cos ³: …48†

We now expand the anisotropic charge «…À; ³† in terms of four-dimensional
harmonics [48, 54, 55] (alternative approaches to calculate the «¶¶ 0ll 0 matrix elements
can be found in [56±58]):
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«…À; ³† ˆ
���
p

p X

¶

1

…¶ ‡ 1†…¶ ‡ 3†
"

…¶ ‡ 2†c3

p
Y¶=2‡1;l;0…2À; ³; 0†

¡ 23=2c
X

l

Y¶=2‡1;l;0…2¯; 0; 0†Y¶=2‡1;l;0…2À; 0; 0†
#

: …49†

Substituting (49) into (48) yields [55]

«¶¶ 0 ;ll 0 ˆ 16
���
2

p
p

X

¶l

1

…¶ ‡ 1†…¶ ‡ 3†

c3
¶

2
‡ 1

�������
2p2

p ¡ cY
¶=2‡1;l;0

…2¯; 0; 0†

2

64

3

75

…2l ‡ 1†…2l 0 ‡ 1† ¶

2
‡ 1

¶ 0

2
‡ 1

2p2

2

4

3

5
1=2

hl 0; 0; l; 0; l; 0i

¶ 0

4

¶

4

¶

4

¶ 0

4

¶

4

¶

4

l 0 l l

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

…50†

where

¶ ˆ j¶ 0 ¡ ¶j; j¶ 0 ¡ ¶j ‡ 4; . . . ; ¶ 0 ‡ ¶ ¡ 4; ¶ 0 ‡ ¶;

l ˆ jl 0 ¡ lj; jl 0 ¡ lj ‡ 2; . . . ; l 0 ‡ l ¡ 2; l 0 ‡ l:

Equations (40) and (50) can now be inserted into the secular equation (29), whose
solution, as will be shown in the following, gives the energy spectrum.

A drastic simpli®cation of equation (50) can be obtained considering states where
the quantum number l is zero:

«¶¶ 0 ;00 ˆ 16�������
2p2

p
X

¶

¶

2
‡ 1 c3 ¡ cC

1

¶=2
…cos …2¯ ‡ p††

…¶ ‡ 1†…¶ ‡ 3†
…51†

where C1
¶…x† is a special Gegenbauer polynomial, which can be calculated by

recursion relations ([59, p. 1030]).
This expression can be very useful when it is su� cient to consider states with

l ˆ 0, that is when the quantum number l is a `good’ quantum number (this is the
case for H‡

2 , as will be shown in the following).

3.5. Symmetric hyperangular parametrization
As mentioned before, when J ˆ 0 the motion of three particles evolves on a four-

dimensional S3 hemisphere. Alternative angular parametrizations can be built for S3

[15]; among those, besides the parametrization previously examined, we can choose
angular variables corresponding to the `symmetric parametrization’ [60], which was
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initially proposed by Smith. In this representation the four-dimensional
hyperspherical harmonics can be expressed in terms of Wigner functions
D

¶=4

·=4;·=4
…2©; 4£; 0†:

Y¶=2;0;·=2…2£; 0; 2©† ˆ …¡†·=2 ¶=2 ‡ 1

2p2

1=2

D
¶=4

·=4;·=4
…2©; 4£; 0† …52†

and «…!† now takes the following form:

«…£; ©† ˆ z3z2c��������������������������������������������������
1 ‡ cos 2£ cos 2…© ‡ 2¯†

p ‡ z1z3c��������������������������������������������������
1 ‡ cos 2£ cos 2…© ¡ 2¯†

p

‡ z2z1c3������������������������������������
1 ‡ cos 2£ cos 2©

p : …53†

The integral (32) becomes

«¶¶ 0·· 0 ˆ
…

D¶=4
·=4;·=4

…2©; 4£; 0†«…£; ©†D¶ 0=4
· 0=4;· 0=4

…2©; 4£; 0† d cos 4£ d cos 2© …54†

and can be solved by expanding «…£; ©† in terms of Wigner functions [13, 47]

«…£; ©† ˆ 16…2º†1=2
X

¶;·

‰…¶ ‡ 2†…2 ¡ ¯·0†Š1=2

…¶ ‡ 1†…¶ ‡ 3†
c3 ¡ c cos 2¯·… †D¶=4

·=4;·=4
…2©; 4£; 0†:

…55†

Once more the evaluation of the matrix elements «¶¶ 0·· 0 reduces to an integration of
the product of three hyperspherical harmonics.

Inserting expansion (55) in (54) yields

«¶¶ 0·· 0 ˆ
8

���
2

p

p
¶

2
‡ 1

¶ 0

2
‡ 1

µ ¶1=2 X

¬

…¡1†¬

…2¬ ‡ 1†…2¬ ‡ 3†
Á

‰c cos ¯…· ‡ · 0† ¡ …¡†…·‡· 0†=2c3Š
¶

4
;
·

4
;
¶ 0

4
;
· 0

4

¬

4
;
· ‡ · 0

4

2

‡ ‰c cos ¯…· ¡ · 0† ¡ …¡†…·¡· 0†=2c3Š ¶

4
;
·

4
;
¶ 0

4
; ¡ · 0

4

¬

4
;
· ¡ · 0

4

2
!

…56†

which turns out to be extremely useful for numerical evaluation: recurrence relation-
ships for the Clebsch±Gordan coe� cients [6, 45] can be exploited to calculate the «
matrix elements with an extremely high accuracy and e� ectiveness. The quantum
number · has the following range 0 µ · µ ¶ and ·=2 must have the same parity as

¶=2, i.e. it changes as · ˆ ¶; ¶ ¡ 4; . . . ; 0 (or 2 according to parity).
It is worth noting that the hyperspherical harmonics of equations (52) and (46)

are connected by the orthogonal transformation [24] (see ®gure 3(d)):

X

l

…¡†…¶¡·†=4…{†l ¶

4
; ¡ ·

4
;
¶

4
;
·

4
l0 Y¶=2;l;0…2À; ³; 0†

ˆ ¶=2 ‡ 1

2p2

1=2

D¶=4

·=4;·;4
…2©; 4£; 0†: …57†
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Therefore, the elements of equation (50), numerically more complicated because

of the presence of 9j coe� cients, can also be obtained by means of the above

orthogonal transformation.

3.6. Alternative parametrizations

A typical feature of the Sturmian basis sets is their relationship with hyper-

spherical harmonics belonging to a space of a dimension higher by one. As shown in

[4, 40], the di� erent harmonics corresponding to alternative parametrizations of the

hypersphere can be connected by vector coupling and recoupling coe� cients (and

their extensions to include multiples of 1/4 as arguments [41]). The orthonormal

transformations that connect harmonics in momentum space are identical to those

connecting the corresponding eigenfunctions in con®guration space, because of

the reciprocity between the two spaces. Thus one can exploit the overlap

(coupling and recoupling coe� cients) between their counterparts (hyperspherical

harmonics) in momentum space, in order to introduce alternative basis sets in

con®guration space (with no need of the explicit expression for the corresponding

eigenfunctions).

The search for alternative bases, labelled by di� erent quantum numbers, is

extremely important: reduced basis sets, with better convergence properties, can

be obtained by considering truncations on speci®c quantum numbers. Since

the above complete sets show a slow convergence (see next section), this feature

is not negligible. For example the quantum number ¶, as will be shown in

section 4, is not a suitable quantum number for most of the three-body

problems which we have analysed, evidently because it cannot be put in any
correspondence to any physical feature of the system. For this reason in the

following we will propose the introduction of an alternative quantum number

which could e� ciently substitute ¶ from the viewpoint of convergence of the

expansion.
The Fourier transform of the six-dimensional Sturmian function in the asym-

metric hyperspherical parametrization (see section 3.4) is a seven-dimensional

hyperspherical harmonic [4] acting on S6, which corresponds in terms of group

theory to the following reduction of the O…7† rotational group into its subgroups:

O…7† ¼ O…6† ¼ O…3† O…3†. In this sense the quantum number n, which is the

quantum number of a seven-dimensional angular momentum, can be de®ned as

grand principal quantum number [22].

Alternative subgroup chain reductions can be obtained exploiting the appro-

priate overlap between the seven-dimensional harmonics involved; among those the

reduction O…7† ¼ O…4† O…3† leads to the elimination of ¶ and the introduction of a

quantum numberÐwhich can be denoted by ¸ in analogy with the principal

quantum number n of the hydrogen atom in the physical caseÐcorresponding to

the angular momentum on a four-dimensional sphere S3. The di� erent O…7†
parametrizations and the corresponding hyperspherical harmonics involved are

shown in ®gures 3(a) and (b) by the tree method, together with their simpli®cation

when J ˆ 0. The superposition (or timber coe� cient [61]) between the two har-

monics can be written as a Racah polynomial [38, 39, 41], that is as a hypergeometric

sum of 4F3…1† type, and can be written as an extended 6-j symbol, whose explicit

expression when l1 ˆ l2 ˆ l is
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T n;l
¸¡1;¶ ˆ …¡†…¸‡¶¡l¡2¡p†=2‰¸…¶ ‡ 2†Š1=2

¡ 1

4
¡ p

2

¶ ‡ 1

2

n

2
‡ 1

4

¡ l

2
¡ 3

4

¸ ¡ 1

2

l

2
¡ 1

4

8
><

>:

9
>=

>;
…58†

where p ˆ 0 when ¸ ¡ 1 is even or p ˆ 1 when ¸ ¡ 1 is odd. The application of this
coe� cient to the matrix elements of the secular equation leads to an energy spectrum
where the states are labelled with n; ¸; l. The quantum number ¸ must have the same
parity of n ¡ l ¡ 1; because of the parity restrictions on l this results in ¸ being even
when n ¡ 1 is even and odd when n ¡ 1 is odd. Numerical results on the behaviour of
this kind of basis set will be given in the following section.

4. Applications
In section 4.1 numerical results will be presented to test the e� ectiveness in terms

of convergence properties for alternative parametrizations and truncations of the
basis sets. Section 4.2 is an account of progress in numerical approaches, approx-
imations, generalizations and extensions.

4.1. Benchmark numerical results
The secular equation (29) is completely general and thus can be applied to any

three-body Coulomb problem: only the numerical values of parameters c, c3 and ¯
(see table 2), which depend on the mass of the particles, and the values of charges
(z1; z2; z3) vary. For helium and the other bielectronic systems, for which
m1 ˆ m2 ½ m3, the parameter c3 is practically the same, so the only parameter
which e� ectively varies along the series is the nuclear charge z3. Therefore, the
performances of the di� erent bases employed in the explicit construction of the
matrix elements will be discussed as a function of z3. These results will then be
compared with those obtained for two other benchmark systems where the par-
ameters c; c3 and ¯ also vary: H‡

2 beyond the Born±Oppenheimer approximation
(m1 ˆ m2 ¾ m3) and e¡e‡e¡ (m1 ˆ m2 ˆ m3).

The matrix arising from the solution of secular equation (29) is symmetric, in
principle in®nite, and, after proper truncation, can be diagonalized by standard
techniques. Table 3 reports the ground state energy values for some di� erent three-
body problems in a `closed shell’ representation, that is by truncation on the
quantum number n, considering all the allowed states in the shell. Such a truncation
scheme clearly leads to identical results for all the di� erent basis sets. This kind of set
shows a slow convergence; for bielectronic systems the convergence, especially for
the ®rst terms of the series, improves as the charge value increases, as can be seen
from ®gure 5 where the per cent deviation on the ground state energy is reported as
a function of the nuclear charge. When the value of z3 increases, the third term of
the right-hand side in equation (45), which is constant as z3 varies and takes into
account the electron±electron interaction, becomes more and more negligible
compared to the nucleus±electron interaction, which is proportional to z3. For
H‡

2 the convergence is particularly slow. Comparison with the best available values
for the ground state energies is also illustrated, although only few signi®cant
®gures are reported. For example the best variational ground state energy of He is
¡2.903 724 377 034 119 5 au [67], while for e¡e‡e¡ it is ¡0.262 005 070 232 au [68].

It is worth noting that in table 3 we reported the eigenvalue p0 rather than the
energy; in fact from equation (29) p0 is obtained and then, from p2

0 ˆ ¡2E, the
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energy E can be calculated. As a consequence the energy at ®rst seems to increase

(corresponding to negative values of p0) and then begins to decrease (for p0 > 0). For

this reason Whitten and Sims in their pioneering work [13] were led to the erroneous

pessimistic conclusion that for H‡
2 the method was not variationally converging.

Indeed it is important to remark that when solving secular equations by this

technique, the variational theorem is satis®ed, provided that the convergence is

considered on p0, rather than on E. This follows from the completeness of the basis

set. By truncating also on ¶ and including for any ®xed ¶ all the allowed values of ·
or l in the symmetric or asymmetric representation, respectively, the convergence

improves rapidly for the bielectronic series, as can be seen in table 4: once again this

is especially remarkable for the ®rst terms of the series. This behaviour is shown in

®gure 5 where the convergence of a ¶ truncated set is illustrated by comparison with

that of a closed shell basis set of similar dimensions.

The most suitable value for truncation on ¶ depends on the particular system and

on the number of states with di� erent n in expansion (21). For the bielectronic series

we found out that this value is around ¶ ˆ 24 for nmax 100. Note that in [69], using

an adiabatic approach with non-adiabatic perturbation corrections, a value of
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Figure 5. Per cent deviation from exact values for the ground state energy of the helium
isoelectronic series. The dashed line is obtained by a `closed shell’ approximation
(section 4.1), truncating on n ˆ 20 on the expansion (21), while the dotted line
corresponds to a truncation on ¶ ˆ 22 and considering n up to 40: this leads to a set
of slightly less dimensions and shows that the convergence improves by appropriately
cutting on ¶. This is also illustrated by the dashed±dotted line which represents the
convergence of an expansion of larger dimension, obtained for n ˆ 100 by truncation
at ¶ ˆ 22.
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¡0.258 231 au was obtained for ¶max ˆ 24, which is in agreement with the value one

would get in the present approach by convergence on n for the same ¶max ; indeed we

found that for nmax ˆ 200 we have E ˆ ¡0:258 226 au.
Truncation on the quantum number · or l leads to slower convergence for the

bielectronic series and this partially accounts for the poor performance for drastic

cuts on ¶. In both cases the truncation leads to similar results even if slightly better

for a cut on ·. These characteristics become more pronounced as the charge

increases, as can be seen from table 6, where only the limiting cases for the helium
isoelectronic series have been reported. Further information about the di� erent basis

sets can be obtained analysing systems with a di� erent mass ratio of the three

particles. For e¡e‡e¡ (table 7) the behaviour is very similar to the case of helium,

even if a better convergence is obtained by truncation on a higher value of ¶ (¶=28).

On the contrary for H‡
2 (table 7) a truncation only on ¶ does not lead to any

improvement. Cutting on · (table 8) is not worth it either, while the convergence
becomes far more rapid by cutting drastically on l [55] (table 9).

As shown in ®gure 6(a) the matrix elements representing the coupling of states

with values of l di� erent from zero are notably smaller than those with l ˆ 0 and can

be neglected (i.e. an expansion set where l ˆ 0 can be used). In ®gure 6(b) we

illustrate the structure of the matrix Ann 0¶¶ 0·· 0 and Ann 0¶¶ 0 ll 0 which have been obtained

by approximating to zero those elements whose value is four orders of magnitude
smaller than the lowest eigenvalue. It can be seen that the residual elements obtained

from the asymmetric hyperangular parametrization (with l 6ˆ 0) are much more than

those obtained from the symmetric parametrization, indicating that this basis set is

more promising than a closed shell one. In ®gure 7 we also exhibit the structure of

the matrix Ann 0¶¶ 000: due to the presence of the zeroes of the radial integral the matrix

structure becomes particularly compact and this feature can be exploited with the
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Table 7. Ground state energy E and maximum ¶ values and corresponding dimension (dim.)
of the A matrix for e¡e‡e¡ and H‡

2 by truncation scheme on ¶.

e¡e‡e¡ H‡
2

E p0

dim. nmax ¶max …au† dim. nmax ¶max …au†

1974 56 24 70.2567 116 18 8 71.1531
3624 75 28 70.2582 516 40 12 70.4111
exact [62] 70.2620 exact [66] 1.0926

Table 8. Ground state energy E and maximum ¶ and · for e¡e‡e¡ and H‡
2 by truncation

scheme on ¶ and ·.

e¡e‡e¡ H‡
2

E p0

dim. nmax ¶max ·max …au† dim. nmax ¶max ·max …au†

25 9 8 0 70.2198 270 38 16 0 70.6693
420 40 38 0 70.2257 518 42 12 8 70.4043
exact [62] 70.2620 exact [66] 1.0926
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Figure 6. Structure of the matrix Ann 0¶¶ 0·· 0 (a) and Ann 0¶¶ 0 ll 0 (b) for H‡
2 , obtained considering

all orbitals up to n ˆ 15 (closed shell truncation scheme): elements more than four
orders of magnitude smaller than the ground state eigenvalue are taken as zeroes.
Matrix (b) is seen to be more sparse than matrix (a). The vanishing elements are
those coupling states with l 6ˆ 0. Thus the basis set with l ˆ 0 results to be more
rapidly converging than the closed shell one.
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application of diagonalization packages or algorithms (Lanczos, ARPACK) for
sparse matrices [70]. The sparseness of these matrices is strictly linked to the
behaviour of these basis sets under the parity operation. As we mentioned in section
2.2 parity conserving Sturmian basis sets corresponding to those described above are
currently under investigation [32]. Their utilization, as well as the exploit of further
unexplored yet discrete symmetries speci®c of the system under study, will be
substantial in reducing the dimensions of the matrices to be diagonalized, thus
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Figure 7. Matrix Ann 0 ¶¶ 000 for H‡
2 with n ˆ 22. It has the same structure as that of the

Rnn 0¶¶ 0 matrix and zero elements are more regularly distributed than for the matrix in
®gure 4.

Table 9. Ground state energy E and maximum ¶ and l for e¡e‡e¡ and H‡
2 by truncation

scheme on ¶ and l.

e¡e‡e¡ H‡
2

E p0

dim. nmax ¶max lmax …au† dim. nmax ¶max lmax …au†

25 9 8 0 70.2061 270 38 16 0 70.3290
420 40 38 0 70.2069 1640 80 78 0 0.8080

4290 130 65 0 0.9566
exact [62] 70.2620 exact [66] 1.0926
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decreasing the computational load and the time requirements, which represent the
main bottleneck in the practice of these calculations.

For helium (table 10) a truncation on ¸ is connected to a reduction on l, which
does not appear to lead to good results. In any case, for the same values of l; ¶ seems
to be a better quantum number with respect to ¸. For the H‡

2 molecular ion the
truncation on ¸ (table 10), even if not drastic, produces better results than a
truncation on ¶, so ¸ is certainly a better quantum number than ¶. As a consequence
the best basis for H‡

2 is that labelled by n; ¸; l and we can remark that this can be
understood by noting that ¸ and l are the principal quantum number and the orbital
angular momentum of the hydrogen atom.

Regarding the alternative parametrization of section 3.3, the results presented
here have to be considered as exploratory: having not succeeded so far in ®nding a
sum rule for the connecting transformations , one has to store and multiply large
matrices. This is an indication that there is need for further analytical developments
that allow basis set transformations , and thus exploration of alternative truncation
schemes.

4.2. Further results and extensions
In the past few years the utilization of basis sets described in this work, or their

modi®cations and extensions, has found increasing attention for perspective applica-
tions to quantum systems in chemistry and physics. As a matter of fact these
methods are an interesting and fruitful alternative to the usual self-consistent ®eld
approaches.

In this section we shall give a short list of applications of this kind (or of their
modi®cations) to multielectronic bound systems (atoms and molecules) and to
scattering problems, and their extensions to relativistic and to non-standard basis
sets will be illustrated. The interested reader is referred to the reference list. Nuclear
applications are covered by an extensive review [71].

For recent accounts of hyperspherical approaches to atomic structures as a few-
body Coulomb problem, following the pioneering work of Fano, Macek and others,
see references [72±76]. These authors investigated advantages of solving the problem
parametrically in the hyperradius and then obtaining the spectra from bound states
of adiabatic potential curves. Inclusion of non-adiabatic couplings by perturbation
theory [69] has been reported.

Alternatives have been described regarding Coulomb Sturmians for many-
electron systems: owing to the slow convergence of the previous `rigorous’ approach

V. Aquilanti et al.702

Table 10. Ground state energy E and maximum ¸ and l values for He and H‡
2 by truncation

scheme on ¸ and l.

He H‡
2

E p0

dim. nmax ¸max lmax …au† dim. nmax ¸max lmax …au†

80 20 10 0 72.5695 550 64 10 0 0.6181
420 30 12 10 72.8549 550 60 11 0 0.6319
618 30 18 10 72.8639 684 68 13 0 0.7067
exact [63] 72.9037 exact [66] 1.0926
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(section 3), other avenues have been pursued. Many-electron Sturmians have been
constructed as the product of one-electron Sturmians [21±23, 77] and applied for
extensive calculations of the energy spectrum of atoms and ions [78, 79] also in
strong external ®elds [80, 81] where treatments based on perturbation theory are no
longer applicable. Convergence of these sets is rapid, although the spectrum of the
generating eigenproblem is mixed, containing also, apart from discrete eigenvalues, a
continuum part: therefore there is no guarantee that every well-behaved function of
the same variables obeying the same boundary conditions can be expanded in terms
of this basis [82]. However [21], since if this extremely stringent condition were
applied to the conventional many-electron basis sets actually used in con®guration
interaction calculations, all of them would be disquali®ed, great expectations are
foreseen along these lines, which may amply exploit parts of well-developed
quantum chemical codes.

An alternative approach, initially proposed by Fabre de la Ripelle for nuclear
physics [83, 84] and developed essentially by Bian and Deng [85±87], called `potential
harmonic’ method, consists of using selected ad-hoc subsets to obtain reasonable
convergence for the three-body Coulomb problems (He atom, the positronium ion
e‡e¡e‡, etc.).

The use of ad-hoc correlation functions of Jastrow type has also been proposed
as successful in nuclear physics, where the `identity’ of nuclear particles (protons and
neutrons) to solve problems up to eight nucleons is exploited (see [88±90] for recent
extensions). However, both these methods are tailored only for calculations of
ground state energies, and have to be adapted to give excited states, while in principle
the procedure of sections 3 and 4.1 yields a whole spectral range.

As already mentioned, applications of Sturmian basis sets in momentum space to
the description of molecular structure date back to 1965 when Shibuya and Wulfman
[18] developed a treatment for the problem of one electron in the presence of many
®xed nuclei by extending Fock’s momentum space method: in particular they applied
this analysis to the H‡

2 molecular ion. The basic ingredient of their treatment is the
explicit calculation of a matrix, usually indicated with S…R†, representing the overlap
between the basis eigenfunction relative to a certain nucleus and the eigenfunction
basis set relative to another nucleus placed at an arbitrary distance. Monoelectronic
energies and orbitals can be obtained, as shown elegantly by Dunlap [91], solving a
secular problem involving only the S matrix. Further progress was made by other
authors [92±94] and most important in this track is the work of Koga and co-workers
[95±99] who, by using a secular equation based on the second iterated momentum
space SchroÈ dinger equation were able to obtain the electronic energy of H‡

2 with 10-
®gure accuracy as a function of the internuclear separation. The precision of their
momentum space results at low values of R is higher than available con®guration
space calculations. The present authors [2] have extended Shibuya and Wulfman’s
analysis using instead of conventional spherical orbitals, parabolic (or Stark) basis
sets which provide a simpler expression for the S matrix and a better convergence
when reduced basis sets are employed. The hypothesis of the approximate conserva-
tion of the parabolic quantum number leads to an eigenfunction expansion that,
when truncated to only three orbitals, describes the electronic energy at the
equilibrium state within 5%. One of the key points in Shibuya and Wulfman’s
treatment is the introduction of a remarkable plane wave expansion in terms
of hyperspherical harmonics and Coulomb Sturmians, extremely useful for
molecular calculations. Extensions to the parabolic parametrization [2] and to the
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d-dimensional space [4], in view of multielectron molecular applications, have also
been introduced by the present authors. The extension to many electron molecules is
currently being studied [23].

Beside standard Sturmian basis sets recent advances have been made on elliptic
orbitals (both sphero-elliptic and cylindrical-elliptic) coming from alternative
separation of variables for the four dimensional sphere S3. Despite the fact that
their manipulation is more complicated, elliptic Sturmians have an additional degree
of freedom, namely the modulus of Jacobi elliptic functions, measuring distances
between elliptical foci: this makes them more ¯exible compared with standard
Sturmians [32].

Relativistic Coulomb Sturmian basis sets have also been proposed and their
properties discussed in [23, 100, 101] with reference to solving Dirac-type equations.

Beside atomic and molecular bound states, Sturmian basis sets have also been
used to describe scattering processes. In [102] the generalized Sturmian method
developed by Avery was applied to the inelastic scattering of fast electrons by atoms
and ions. The approach is known to be fruitful for reactions involving three
Coulomb particles, and applications so far have been devoted to muonic systems
of interest in cold fusion [103±105]. Finally, in the work of our group concerning
reactive scattering the slow convergence encountered for this type of set has been
circumvented through the `hyperquantization ’ algorithm based on discrete analogues
of spherical and hyperspherical harmonics [62, 106]. For a recent review see [107]. Its
implementation to the problems of interest here is a task for future work.

5. Conclusion
Our search for Sturmian expansion basis sets for atomic and molecular problems

is triggered by the observation that conventional hydrogenoid spherical orbitals are
strictly linked to tetradimensional harmonics on the hypersphere S3 when the atomic
orbitals for the tridimensional hydrogen atom are considered in momentum space.
This encouraged us to study alternative representations such as those providing the
Stark and Zeeman basis sets, related to the spherical one by orthogonal transforma-
tions, see equations (12) and (15). These transformations can also be interpreted as
suitable timber coe� cients relating di� erent tree structures of hyperspherical har-
monics for R4 (see ®gure 1).

The analysis of alternative representations for hydrogen atom wavefunctions can
be extended to any mathematical dimension and therefore can be of interest beyond
the one-electron case. The work in [5], outlined in section 3 suggests that what we
have done there can also be exploited in higher dimensional problems [4]. In general,
one has orthonormal basis sets seen from two complementary perspective view-
points, the (hyper)harmonics and the (hyper)hydrogenoid position wavefunctions:
since the multidimensional extension of Fock projection relates the harmonics to
hydrogenoid momentum space wavefunctions, both can be used to expand the d-
dimensional plane wave [4] and to Fourier transform between position and
momentum space. Transformations between the generalizations to hyperspaces of
the spherical and Stark bases similar to the one discussed in section 2 will require the
introduction of generalized angular momentum coupling coe� cients (Hahn and
Racah polynomials), whose properties are described in [6, 41].

In con®guration space, the many-body Coulomb problem, describing atomic and
molecular structure, is isomorphic to that for a multidimensional hydrogen atom
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with an anisotropic charge [108]. This encourages (see [5]) multidimensional

hydrogenoid Sturmian expansions [13, 109] consisting of a (hyper)radial part and

of a hyperspherical harmonic. As outlined above, the corresponding eigenfunctions

in momentum space are hyperspherical harmonics belonging to a space of one

dimension higher. The calculation of matrix elements for the secular equation for the
spectrum involves radial and angular integrals. Guided by the previous observation

of the duality between multidimensional hydrogenoid Sturmians and hyperspherical

harmonics, we have shown that not only angular integrals, but also radial ones can

be obtained as (generalized) vector coupling coe� cients and that the separation into

radial and angular contribution disappears from the hyperspherical standpoint in

momentum space.

Therefore, the numerical solution of the secular equation for di� erent representa-

tions for three-body problems (section 4) enabled us to investigate the `goodness’ of
the various quantum numbers arising in the labelling of the various kinds of

harmonic. Alternative subgroup reduction chains corresponding to alternative
expansions in hyperspherical harmonics, can also be dealt with by a generalization

of angular momentum algebra [5]. Explicitly, as already noted, the three-body

problem requires a mapping of the 6-sphere S6 embedded in a seven dimensional

Euclidean space. To test the e� ectiveness of the di� erent parametrizations in some

speci®c cases we have already illustrated the above considerations by some numerical

examples again for the test case for H‡
2 [5, 54], but relaxing the usual restriction to

the ®xed nuclei scheme as adopted, for example in [2].

The generalization of the Fock stereographic projection of section 2 to d 3 and
in two alternative sets of hyperspherical angles is given in [4]. For alternative

Sturmian basis sets (generalizations of the spherical and Stark Sturmians [2]), which

enjoy the important properties of being complete and orthonormal sets in a d-

dimensional con®guration space [109, 110], following Shibuya and Wulfman [18] we

can establish remarkable (hyper)-plane wave expansions of the d-dimensional wave in

a …d ‡ 1†-spherical harmonic and Sturmian hydrogenoid orbitals. The mathematical

aspects of such expansions for the d ˆ 3 case are discussed in [110].

The extension to molecules starts from early work by Shibuya and Wulfman [18],

who used an expansion of this type in momentum space for d ˆ 3 to go on to expand
one-electron molecular orbitals and to obtain secular equations for multicentre

problems. Recently [2], the alternative orbitals corresponding to separation in

parabolic coordinates were considered: in particular, the Stark basis was shown to

be superior to the usual spherical basis for systems with axial symmetry, an

important case study being the molecular orbitals for H‡
2 [2]. Further work will

have to consider this also for multielectron orbitals, and the types of coordinates [32]

insu� ciently explored so far are worthy of closer attention.

In view of their optimal properties (orthonormality, completeness, discretization
of the continuum) we expect multidimensional Sturmians (and their counterparts in

momentum space) to be useful as expansion bases in a variety of atomic and

molecular problems [1, 22]. An exploration of the use of six-dimensional Sturmians

for two-electron systems (e.g. for the helium atom), exploiting alternative representa-

tions for seven-dimensional hyperspherical harmonics, has been ®rst presented in [5]

and documented in sections 3 and 4. (They may also be of interest for d-dimensional

scaling problems [111].) It is shown there that many relevant matrix elements can

accordingly be calculated by a generalized angular momentum algebra.
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Indeed, the outstandingly attractive feature of the presently introduced Sturmian
basis set, namely their identi®cation with hyperspherical harmonics implies that
physically, the labels of the harmonics can be considered as quantum numbers, and
interpreted as associated to (hyper)angular momenta. So the mathematical appara-
tus of orthogonal polynomials and of special ®nite hypergeometric series can be
taken over and given the physical interpretation of a generalized angular momentum
algebra. An admittedly partial reference list includes [38, 41, 112, 113].

Several perspectives for future work open in the directions both of the
development of such an algebra and of the quantum mechanical applications.
Indeed special ®nite hypergeometric series (such as the Hahn polynomials encoun-
tered here (section 2)), which are generalizations of vector coupling coe� cients [6],
can be interpreted as discrete analogues of spherical and hyperspherical harmonics.
This provided the tools required for the hyperquantizatio n technique [70, 106], of
interest for atomic and molecular problems, and developed by us for reactive
scattering problems [107]. Analytical advances in this direction can foster progress
in the numerical implementation of the hyperspherical harmonic approach to the
solution of quantum chemical problems.
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